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Ongoing challenges in topological polymer chemistry are reviewed. In particular, we focus
on recent developments in an ‘‘electrostatic self-assembly and covalent fixation (ESA–CF)’’
process in conjunction with effective linking/cleaving chemistry including a metathesis
process and an alkyne–azide click reaction. A variety of novel cyclic polymers having spe-
cific functional groups and unprecedented multicyclic macromolecular topologies have
been realized by combining intriguing synthetic protocols.
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1. Introduction

The construction of sophisticatedly designed topologies
has been a challenging issue in synthetic polymer chemis-
try. Particularly, cyclic topologies attract an increasing
attention due to the distinctive properties arising from
the unique structure that lacks chain ends [1]. For example,
a monocyclic polymer, in comparison with the linear coun-
terpart, has distinctive static and dynamic properties
including a smaller hydrodynamic volume, less entangle-
ment, and higher glass transition temperature as well as
a non-reptational diffusion. Recently, new synthetic proto-
cols have been developed to produce a variety of cyclic
polymers of guaranteed purity, providing rational polymer
materials designs relied on the novel topologies [2,3].

The most straightforward synthetic approach for ring
polymers is a reaction between a linear polymer precursor
having reactive groups, i.e., telechelics, and bifunctional
coupling reagent [4]. This bimolecular cyclization protocol
. All rights reserved.

uka).
should be performed with strictly equimolar amounts of
the telechelics and coupling reagent in dilution. Conse-
quently, this process is often considered unattractive in
practice. Alternatively, unimolecular processes, which do
not require the exact equivalence of two components, have
been developed. Recently, Grayson et al. have prepared a
telechelic polystyrene having an alkyne and an azide
groups, which was subjected to the end-to-end polymer
cyclization via click chemistry [5]. However, this method-
ology suffers from the synthetic difficulties to prepare
asymmetric telechelics.

For the effective construction of cyclic polymer topolo-
gies, we have developed an electrostatic self-assembly and
covalent fixation (ESA–CF) process using a linear or star
telechelic precursor having cyclic ammonium salt end
groups accompanied by a plurifunctional carboxylate coun-
terion [6–8]. The self-assembly of telechelic polymer pre-
cursors through non-covalent interactions, typically with
ionic salt groups [9,10] with multiple hydrogen-bonding
groups [11,12], or with transition metal–ligand complexes
[13] has been exploited to provide polymer materials
exhibiting unique properties in solution and in bulk due
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to their dynamic equilibrium nature. In the ESA–CF process,
the combination of a set of the telechelic prepolymers and
counteranions forms a predesigned self-assembly via the
electrostatic interaction, in which the initially resulted ki-
netic agglomerate restructures into a thermodynamically
favored ionic complex with the smallest number of compo-
nents in dilution by keeping the balance of the electric
charges. Subsequently, the solution was heated to cause
the selective ring-opening reaction of the cyclic ammonium
end groups by the carboxylate counterion to construct
covalently linked polymer topologies (Scheme 1) [6].

This methodology has been demonstrated to produce a
variety of polymers, such as polytetrahydrofuran (poly(THF))
[6], polyethylene glycol [14], polystyrene [15], and
polydimethylsiloxane [16] using the relevant prepolymers
obtained by living polymerization and subsequent transfor-
mation of end groups. Furthermore, a monocyclic polymer
possessing a prescribed functional group at a designated po-
sition was also prepared by making use of either a telechelic
precursor having a functional group or dicarboxylate
counterion with a functional group [17]. Such prepolymers,
namely kyklo-telechelics, thus formed were exploited to
construct various complex multicyclic polymer topologies
[18].

In the present feature article, we show recent develop-
ments in the ‘‘electrostatic self-assembly and covalent fixation
(ESA–CF)’’ process, particularly in conjunction with effec-
tive linking/cleaving chemistry including metathesis pro-
cess and alkyne–azide click reaction to afford a variety of
novel cyclic polymers having specific functional groups
and unprecedented multicyclic macromolecular topologies.
2. New tailored cyclic polymers designed through the
ESA–CF process

By an extension of the ESA–CF process, we have prepared
a cyclic polymer having a fluorescent group for a single mol-
ecule spectroscopic study of cyclic and linear polymers to
elucidate topology effects in polymer diffusion [19]. Thus,
we employed a linear telechelic poly(THF) having N-phenyl
piperidinium (6-membered ring) salt groups accompanied
by a perylene dicarboxylate counteranion (Mp = 6000,
PDI = 1.13). The subsequent heating of the ionic complex re-
sulted in the formation of a cyclic polymer having a perylene
unit mostly connected by a simple ester linkage via the elim-
ination of N-phenylpiperidine in 65% yield (Scheme 2a) [20].
According to NMR, 88% of the N-phenyl piperidinium groups
Electrostatic
Self-Assemb−+

+
−
−− +

+

+
+

+

+

− −
−−

−
−

−
−+

+
+

+

O2CR

N
R' Δ(b)

(a)

Scheme 1. (a) Schematic representation of the ESA–CF process. (b) Selective
were eliminated, while the rest underwent a ring-opening
reaction. We have subsequently disclosed the multiple-
mode diffusion process uniquely observed in a cyclic poly-
mer in contrast to the linear counterpart [19].

Notably, a relevant ring polymer was accessible by
using an alternative telechelics having N-phenyl pyrrolidi-
nium (five-membered ring) groups. However, the latter
was inapplicable to single-molecule spectroscopy due to
the photo-quenching by the N-phenyl amine group formed
through the ring-opening reaction of the pyrrolidinium salt
groups (Scheme 2b).

As another development of the ESA–CF process to con-
struct tailored cyclic polymers having specific functional
groups, we have newly prepared cyclic poly(THF)s having
a hydrogen-bonding isophthaloyl benzylic amide group.
The cooperative electrostatic and hydrogen-bonding self-
assembly of the polymer precursors and a subsequent cova-
lent conversion have been demonstrated as an effective
means for the synthesis of polymer catenanes [21]. Thus, a
telechelic poly(THF) having an isophthaloyl benzylic amide
group at the center position and having N-phenylpyrrolidi-
nium salt end groups carrying a biphenyldicarboxylate
counteranion (Mp = 2500, PDI = 1.39 after cyclization by it-
self) was prepared and subjected to a covalent conversion
reaction in the presence of another type of a pre-formed cyc-
lic poly(THF) having the hydrogen-bonding unit (Mp = 2400,
PDI = 1.32) (Scheme 3). A polymer [2]catenane comprised of
the two different cyclic poly(THF) components was isolated
up to 7% yield as an acetone-insoluble fraction and unam-
biguously characterized by means of MALDI-TOF mass spec-
troscopy together with 1H NMR and SEC.
3. ESA–CF process coupled with an olefin metathesis
process

Ring-opening metathesis polymerization (ROMP) and
acyclic diene metathesis (ADMET) have extensively been
utilized in synthetic polymer chemistry [22]. Moreover,
new functional group-tolerant catalysts have recently been
developed and successfully applied for the synthesis of
topologically unique molecules like catenanes [23,24] as
well as cyclic polymers through ring-expansion polymeriza-
tion [25–27]. We prepared a,x-diallyl telechelic poly(THF)s
and poly(acrylic ester)s through the living polymerization
followed by an end-capping reaction. The subsequent
metathesis condensation, i.e., metathesis polymer cycliza-
tion (MPC), under dilution produced the corresponding
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ring-opening reaction of a cyclic ammonium salt end group by heating.



NN

O

O O

O

O
O

O
O

O O
n-1

NN

O

O O

O

O
O

O
O

N N

O O
n-1

NN

O

O O

O

O
O

O
O

NN

O

O O

O

O
O

O
O

N N

O O
n-1

N
O

N
n

Fluorescent

Non-fluorescent
(Quenched by N-phenylamine)

(a)

(b)

Δ

Δ

Scheme 2. Formation of cyclic polymers through the covalent fixation of (a) N-phenyl piperidinium and (b) N-phenyl pyrrolidinium end groups via ring-
eliminating and ring-opening reactions, respectively.
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Scheme 3. Synthesis of a polymer hetero [2] catenane through a cooperative electrostatic/hydrogen-bonding self-assembly and covalent fixation.
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cyclic polymers in high yields (Scheme 4) [28,29]. The MPC
process has also been applied for the synthesis of an amphi-
philic cyclic block copolymer [30,31]. In case of the cycliza-
tion of a linear telechelic AB diblock copolymer (Mp = 9700,
PDI = 1.34), the cyclized product (Mp = 8900, PDI = 1.42)
was formed almost quantitatively (96%). On the other hand,
a linear telechelic ABA triblock copolymer (Mp = 7800,
PDI = 1.16) yielded the corresponding AB diblock copolymer
(Mp = 6700, PDI = 1.09) in 37% isolated yield. It is notable, in
the latter case, that the ring polymer product was formed
effectively from the starting telechelic block copolymer,
but a part of the product was lost during purification.
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Moreover, we have shown the ESA–CF process in con-
junction with a metathesis condensation as an effective
means to produce multicyclic polymer structures. Thus, a
cyclic prepolymer having an allyloxy group (Mp = 4500,
PDI = 1.23, Scheme 5a), an allyloxy-terminated twin-tailed
tadpole polymer precursor (Mp = 8100, PDI = 1.06, Scheme
5b), and a cyclic polymer precursor having two allyloxy
groups at opposite positions (Mp = 6400, PDI = 1.20, Scheme
5c) have been employed to produce 8-shaped polymers
(28%, 45%, and 66%, respectively) [32]. Furthermore, an 8-
shaped kyklo-telechelic precursor having two allyl groups
at opposite positions (Mp = 7800, PDI = 1.16) has also been
prepared by the ESA–CF process with a self-assembly con-
sisting of two units of a cationic linear precursor having an
allyl group and tetracarboxylate counteranion (Mp = 4800,
PDI = 1.11), and subjected to the metathesis condensation
to construct a polymeric d-graph having a doubly-fused tri-
cyclic topology (Mp = 7000, PDI = 1.18) in 67% yield (Scheme
5d) [33]. The values of Mp/Mn for the benzoate-terminated
linear precursor, 8-shaped prepolymer, and d-graph were
0.96, 0.82 and 0.63, respectively, indicating the progressive
contraction of the 3D-size of multicyclic polymers along
with the increases of the chain segments in the fused ring.

A cross metathesis process has also been combined
with the ESA–CF process to accomplish the unique topo-
logical conversion of multicyclic polymers [34]. Thus, an
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Scheme 5. ESA–CF process coupled with olefin metathesis for the
8-shaped poly(THF) having a metathesis-cleavable olefinic
unit at the focal position (Mp = 4900, PDI = 1.13) was syn-
thesized through the ESA–CF process in 38% yield. The sub-
sequent metathesis cleavage reaction of the olefinic group
proceeded effectively in the presence of a second genera-
tion Grubbs catalyst, and the subsequent quenching by
the addition ethyl vinyl ether to give the end-capped prod-
ucts in 99% yield. Thus, the topology of the polymer was
converted from 8-shaped dicyclic to monocyclic. In this
system, moreover, the cyclic polymer products having
two distinctive ring sizes, consisting of one or two prepoly-
mer units, were expected due to the linking mode of the
two prepolymer segments on the employed tetracarboxyl-
ate having an olefinic unit. MALDI-TOF mass indeed
showed the formation of both products. It was noticed also
the absence of a visible fraction corresponding to a poly-
mer [2] catenane during this topological conversion,
implying that the entanglement of the two prepolymer
segments appears reluctant to proceed even they are
placed spatially close by each other (Scheme 6).

4. ESA–CF process coupled with the click chemistry

Typically, multicyclic polymer topologies with the lower
symmetry are difficult to construct by a single-step process.
For example, the selective synthesis of a manacle-shaped
polymer is hard to achieve by the simple application of the
ESA–CF process, but a h-shaped product is formed concur-
rently. Accordingly, an alternative effective cross-coupling
process has extensively been explored. Initially, such con-
densation-type cross-coupling as Sonogashira and Suzuki
reactions were applied to connect two cyclic prepolymers
to form an 8-shaped topology [35]. A series of cyclic prepoly-
mers having a bromophenyl, pentynoyl, or phenylboronate
group was prepared through the esterification of the hydro-
xyl group of a kyklo-telechelics. They were subsequently
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constructions of (a–c) 8-shaped and (d) d-graph polymers.
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Scheme 6. Formation of 8-shaped polymers by the ESA–CF process and subsequent topological conversion by a cross metathesis process, resulting two
distinguishable monocyclic products (top and middle). However, the entanglement of the polymer chains placed closely in space scarcely took place to form
a polymer [2] catenane (bottom).
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subjected to palladium-mediated condensation cross-cou-
pling reactions. SEC showed that the Sonogashira coupling
produced the corresponding product effectively. On the
other hand, Suzuki coupling failed to proceed under the
examined conditions.

Recently, we have discovered an alternative addition-
type cross-coupling by a click chemistry process as an
extremely versatile protocol in conjunction with the
ESA–CF process [36,37]. Thus, a kyklo-telechelics having an
alkyne group (Mp = 2500) was prepared by the ESA–CF pro-
cess and subsequently subjected to click chemistry with a
linear telechelic precursor having azide end groups
(Mp = 2100), resulting in the selective formation of a
bridged-type manacle-shaped polymer (Mp = 6700) in 48%
yield (Scheme 7a) [38]. Similarly, the kyklo-telechelics hav-
ing an alkyne group (Mp = 2400) was subjected to a click
reaction with a three-armed star telechelics having azide
end groups (Mp = 4600), leading to the selective formation
of a bridged-tricyclic paddle-shaped polymer (Mp = 11,100)
in 57% yield (Scheme 7b) [38].

Moreover, this combinational process was applicable
for the construction of spiro-type multicyclic polymers. A
bifunctional kyklo-telechelics having two alkyne groups
at the opposite positions (Mp = 3100) was also prepared
+ N3N3
C

+
C

N3N3
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Scheme 7. Click chemistry between a kyklo-telechelics having an alkyne group
end groups to selectively form bridged-dicyclic and bridged-tricyclic polymers, r
by the ESA–CF process using a linear telechelic precursor
having an alkyne group at the center position and an
accompanying alkyne-functionalized dicarboxylate anion.
The bifunctional kyklo-telechelics was subjected to click
chemistry with another kyklo-telechelics having an azide
group (Mp = 2100), which was also obtained by the ESA–
CF process with an azide-functionalized counterion, giving
a tandem spiro-tricyclic topology (Mp = 7400) in 76% yield
(Scheme 8a) [38]. Furthermore, the use of an 8-shaped
dicyclic dialkyne prepolymer (Mp = 5900) afforded a tan-
dem spiro-tetracyclic construction (Mp = 9200) in 71% yield
(Scheme 8b) [38].

Click chemistry was further applied to the polyaddition
of a asymmetrically bifunctional kyklo-telechelics having
an alkyne group and an azide group at the opposite posi-
tions (Mp = 1700), obtainable by the ESA–CF process, lead-
ing to the formation of a linearly connected spiro-type
multicyclic polymer in 82% yield (Scheme 9a) [38]. The
SEC analysis of the resulting polymer product showed the
construction of hexameric cyclic polymer units on average.
Copolyaddition of the aforementioned bifunctional kyklo-
telechelics having two alkyne groups (Mp = 1800) and a lin-
ear (Mp = 2000) or three-armed star-shaped (Mp = 4500)
telechelics having azide end groups was performed to form
Click
hemistry

Click
hemistry

and (a) linear and (b) three-armed star telechelic precursors having azide
espectively.
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multicyclic polymers having alternating ring/linear (67%)
or ring/star (72%) segments, respectively (Schemes 9b
and c) [38]. The SEC trace of the bridged-type linear multi-
cyclic polymer showed that the product was composed of
four rings connected with three linear segments on
average.

5. Conclusions and future perspectives

This article has highlighted recent remarkable develop-
ments in topological polymer chemistry. Through the
intensive research efforts, a variety of polymers having no-
vel topologies have now been synthesized and convinc-
ingly characterized, and ongoing challenges will extend
the frontier of synthetic polymer chemistry. Furthermore,
the designs of functional polymeric materials, which are
currently restricted mostly to conventional linear and
branched polymers, could be radically refurbished by the
precisely controlled synthesis and by extraordinary prop-
erties of cyclic and multicyclic polymers.
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