Suppression of Void Formation in Particulate-Filled Polyimide Composites: Effects of Thermoplastic Matrices and Residual Solvent

Mizuka Tanimoto and Shinji Ando
Department of Chemistry & Materials Science, Tokyo Institute of Technology
Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo, 152-8552 Japan
E-mail: mtanimoto@polymer.titech.ac.jp

Composite films of polyimides (PIs) and inorganic particles are often fabricated by thermal imidization of a slurry mixture of the particles and a solution of PI precursor, poly(amic acid). A shortcoming of such a process is that water generated as a by-product may lead to formation of voids.[1] We have recently investigated the relationship between structures and thermal conductivity (\(\lambda\)) of PI composites containing various grades of hexagonal boron nitride (hBN) and reported that voids were most frequently found when large, high aspect-ratio flakes are embedded because stacked layers of in-plane oriented particles function as obstructive barriers.[2] For fabricating dense and void-free hBN/PI composite films, we investigated the effects of (1) thermoplasticization of the matrix and (2) curing conditions such as the solvent volatility and the amount of residual solvents on void fractions (\(\phi_v\)). By using a thermoplastic asymmetric biphenyl type PI, aBPDA-ODA (aBPOD, Fig.1b) instead of its thermosetting symmetric counterpart, a complete suppression of voids and ca. 2.2% reduction in \(\phi_v\) were observed at 40 and 50 vol% hBN contents, respectively (Figs.2,3). A clear correlation was found between the out-of-plane \(\lambda\) and the structures of the composites, quantified by \(\phi_v\) and the orientation function \(f\) of hBN particles. Furthermore, as shown in Fig.3, a significant reduction in \(\phi_v\) was achieved at high hBN contents (>40 vol%) in both thermosetting sBPOD and thermoplastic aBPOD composites by using less-volatile N-methylpyrrolidone (NMP, b.p.=202°C) instead of N,N-dimethylacetamide (DMAc, b.p.=165°C) as the solvent. Since reducing the drying time of the solvent further improved the composite density at high hBN contents (i.e. \(\phi_v = 5.6\%\) at 60 vol% hBN), it is assumed that the amount of residual solvent and its plasticization of the matrix play key roles in suppression of void formation.

References